哈代数论 第6版 数论课程经典教材 初等数论 参考正版书籍 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

哈代数论 第6版 数论课程经典教材 初等数论 参考正版书籍精美图片
》哈代数论 第6版 数论课程经典教材 初等数论 参考正版书籍电子书籍版权问题 请点击这里查看《

哈代数论 第6版 数论课程经典教材 初等数论 参考正版书籍书籍详细信息

  • ISBN:9787115562418
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2021-06
  • 页数:528
  • 价格:132.40
  • 纸张:胶版纸
  • 装帧:平装-胶订
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-20 13:11:08

内容简介:

本书是一本经典的数论名著, 取材于作者在牛津大学、剑桥大学等大学授课的讲义. 主要内容包括素数理论、无理数、Fermat 定理、同余式理论、连分数、用有理数逼近无理数、不定方程、二次域、算术函数、数的分划等内容. 每章章末都提供了相关的附注, 书后还附有译者编写的相关内容的*进展, 便于读者进一步学习.


书籍目录:

第 1 章素数(1) 1

1.1 整除性 1

1.2 素数 2

1.3 算术基本定理的表述 3

1.4 素数序列 4

1.5 关于素数的几个问题 5

1.6 若干记号 6

1.7 对数函数 8

1.8 素数定理的表述 9

本章附注 10

第 2 章素数(2) 12

2.1 Euclid 第二定理的第 一个证明 12

2.2 Euclid 方法的更进一步推论 12

2.3 某种算术级数中的素数 13

2.4 Euclid 定理的第二个证明 14

2.5 Fermat 数和Mersenne 数 15

2.6 Euclid 定理的第三个证明 17

2.7 关于素数公式的进一步结果 18

2.8 关于素数的未解决的问题 19

2.9 整数模 20

2.10 算术基本定理的证明 21

2.11 基本定理的另一个证明 22

本章附注 22

第3 章Farey 数列和Minkowski定理 24

3.1 Farey 数列的定义和最简单的性质 24

3.2 两个特征性质的等价性 25

3.3 定理28 和定理29 的第 一个证明 26

3.4 定理28 和定理29 的第二个证明 26

3.5 整数格点 27

3.6 基本格的某些简单性质 28

3.7 定理28 和定理29 的第三个证明 30

3.8 连续统的Farey 分割 30

3.9 Minkowski 的一个定理 32

3.10 Minkowski 定理的证明 33

3.11 定理37 的进一步拓展 35

本章附注 37

第4 章无理数 39

4.1 概论 39

4.2 已知的无理数 40

4.3 Pythagoras 定理及其推广 40

4.4 基本定理在定理43~45 证明中的应用 42

4.5 历史杂谈 43

4.6√5 无理性的几何证明 45

4.7 更多的无理数 46

本章附注 48

第5 章同余和剩余 49

5.1 公约数和最小公倍数 49

5.2 同余和剩余类 50

5.3 同余式的初等性质 51

5.4 线性同余式 52

5.5 Euler 函数 (m) 54

5.6 定理59 和定理61 对三角和的应用 56

5.7 一个一般性的原理 59

5.8 正十七边形的构造 60

本章附注 65

第6 章Fermat 定理及其推论 66

6.1 Fermat 定理 66

6.2 二项系数的某些性质 66

6.3 定理72 的第二个证明 69

6.4 定理22 的证明 69

6.5 二次剩余 70

6.6 定理79 的特例:Wilson定理 72

6.7 二次剩余和非剩余的初等性质 73

6.8 a (mod m) 的阶 75

6.9 Fermat 定理的逆定理 76

6.10 2p 1 1 能否被p2 整除 77

6.11 Gauss 引理和2 的二次特征 78

6.12 二次互倒律 81

6.13 二次互倒律的证明 83

6.14 素数的判定 84

6.15 Mersenne 数的因子, Euler 的一个定理 86

本章附注 87

第7 章同余式的一般性质 89

7.1 同余式的根 89

7.2 整多项式和恒等同余式 89

7.3 多项式(mod m) 的整除性 91

7.4 素数模同余式的根 92

7.5 一般定理的某些应用 93

7.6 Fermat 定理和Wilson 定理的Lagrange 证明 95

7.7 [ 12 (p 1)]! 的剩余 96

7.8 Wolstenholme 的一个定理 97

7.9 von Staudt 定理 99

7.10 von Staudt 定理的证明 100

本章附注 102

第8 章复合模的同余式 103

8.1 线性同余式 103

8.2 高次同余式 105

8.3 素数幂模的同余式 105

8.4 例子 107

8.5 Bauer 的恒等同余式 108

8.6 Bauer 的同余式:p = 2 的情形 110

8.7 Leudesdorf 的一个定理 111

8.8 Bauer 定理的进一步的推论 113

8.9 2p 1 和(p 1)! 关于模p2 的同余式 116

本章附注 117

第9 章用十进制小数表示数 118

9.1 与给定的数相伴的十进制小数 118

9.2 有限小数和循环小数 121

9.3 用其他进位制表示数 123

9.4 用小数定义无理数 124

9.5 整除性判别法 125

9.6 有周期的十进制小数 126

9.7 Bachet 的称重问题 127

9.8 Nim 博弈 129

9.9 缺失数字的整数 131

9.10 测度为零的集合 132

9.11 缺失数字的十进制小数 133

9.12 正规数 135

9.13 几乎所有的数都是正规数的证明 136

本章附注 139

第 10 章连分数 141

10.1 有限连分数 141

10.2 连分数的渐近分数 142

10.3 有正的商的连分数 143

10.4 简单连分数 144

10.5 用简单连分数表示不可约有理分数 145

10.6 连分数算法和Euclid 算法 147

10.7 连分数与其渐近分数的差 149

10.8 无限简单连分数 151

10.9 用无限连分数表示无理数 152

10.10 一个引理 153

10.11 等价的数 155

10.12 周期连分数 157

10.13 某些特殊的二次根式 159

10.14 Fibonacci 数列和Lucas数列 162

10.15 用渐近分数作逼近 165

本章附注 168

第 11 章用有理数逼近无理数 169

11.1 问题的表述 169

11.2 问题的推广 170

11.3 Dirichlet 的一个论证方法 171

11.4 逼近的阶 173

11.5 代数数和超越数 174

11.6 超越数的存在性 175

11.7 Liouville 定理和超越数的构造 176

11.8 对任意无理数的逼近的度量 178

11.9 有关连分数的渐近分数的另一个定理 179

11.10 具有有界商的连分数 181

11.11 有关逼近的进一步定理 184

11.12 联立逼近 185

11.13 e 的超越性 186

11.14 π 的超越性 189

本章附注 192

第 12 章k(1), k(i), k(ρ) 中的算术基本定理 194

12.1 代数数和代数整数 194

12.2 有理整数、Gauss 整数和k(ρ)中的整数 194

12.3 Euclid 算法 196

12.4 从Euclid 算法推导k(1) 中的基本定理 196

12.5 关于Euclid 算法和基本定理的历史注释 198

12.6 Gauss 整数的性质 198

12.7 k(i) 中的素元 200

12.8 k(i) 中的算术基本定理 201

12.9 k(ρ) 中的整数 204

本章附注 206

第 13 章某些Diophantus方程 207

13.1 Fermat 大定理 207

13.2 方程x2 + y2 = z2 207

13.3 方程x4 + y4 = z4 09

13.4 方程x3 + y3 = z3 210

13.5 方程x3 + y3 = 3z3 214

13.6 用有理数的三次幂之和表示有理数 215

13.7 方程x3 + y3 + z3 = t3 217

本章附注 220

第 14 章二次域(1) 223

14.1 代数数域 223

14.2 代数数和代数整数、本原多项式 224

14.3 一般的二次域k(√m) 225

14.4 单位和素元 226

14.5 k(√2) 中的单位 228

14.6 基本定理不成立的数域 230

14.7 复Euclid 域 231

14.8 实Euclid 域 233

14.9 实Euclid 域(续) 235

本章附注 237

第 15 章二次域(2) 239

15.1 k(i) 中的素元 239

15.2 k(i) 中的Fermat 定理 240

15.3 k(ρ) 中的素元 241

15.4 k(√2) 和k(√5) 中的素元 242

15.5 Mersenne 数M4n+3 的素性的Lucas 判别法 245

15.6 关于二次域的算术的一般性注释 247

15.7 二次域中的理想 248

15.8 其他的域 250

本章附注 252

第 16 章算术函数 (n), μ(n),d(n), σ(n), r(n) 254

16.1 函数 (n) 254

16.2 定理63 的另一个证明 255

16.3 M bius 函数 255

16.4 M bius 反演公式 257

16.5 进一步的反演公式 258

16.6 Ramanujan 和的估计 258

16.7 函数d(n) 和σk(n) 260

16.8 完全数 261

16.9 函数r(n) 262

16.10 r(n) 公式的证明 263

本章附注 265

第 17 章算术函数的生成函数 266

17.1 由Dirichlet 级数生成算术函数 266

17.2 ζ 函数 .267

17.3 ζ(s) 在s → 1 时的性状 268

17.4 Dirichlet 级数的乘法 270

17.5 某些特殊算术函数的生成函数 272

17.6 M bius 公式的解析说明 273

17.7 函数Λ(n) 276

17.8 生成函数的进一步的例子 278

17.9 r(n) 的生成函数 279

17.10 其他类型的生成函数 280

本章附注 282

第 18 章算术函数的阶 283

18.1 d(n) 的阶 283

18.2 d(n) 的平均阶 286

18.3 σ(n) 的阶 289

18.4 (n) 的阶 290

18.5 (n) 的平均阶 291

18.6 无平方因子数的个数 292

18.7 r(n) 的阶 293

本章附注 295

第 19 章分划 297

19.1 加性算术的一般问题 297

19.2 数的分划 297

19.3 p(n) 的生成函数 298

19.4 其他的生成函数 300

19.5 Euler 的两个定理 301

19.6 进一步的代数恒等式 304

19.7 F(x) 的另一个公式 304

19.8 Jacobi 的一个定理 305

19.9 Jacobi 恒等式的特例 307

19.10 定理353 的应用 309

19.11 定理358 的初等证明 310

19.12 p(n) 的同余性质 312

19.13 Rogers-Ramanujan恒等式 314

19.14 定理362 和定理363 的证明 316

19.15 Ramanujan 连分数 318

本章附注 319

第 20 章用两个或四个平方和表示数 322

20.1 Waring 问题:数g(k) 和G(k) 322

20.2 平方和 323

20.3 定理366 的第二个证明 324

20.4 定理366 的第三个和第四个证明 325

20.5 四平方定理 327

20.6 四元数 328

20.7 关于整四元数的预备定理 331

20.8 两个四元数的最高右公约数 332

20.9 素四元数和定理370 的证明 334

20.10 g(2) 和G(2) 的值 335

20.11 定理369 的第三个证明的引理 336

20.12 定理369 的第三个证明:表法个数 337

20.13 用多个平方和表示数 340

本章附注 341

第 21 章用立方数以及更高次幂表示数 343

21.1 四次幂 343

21.2 三次幂:G(3) 和g(3) 的存在性 344

21.3 g(3) 的界 345

21.4 更高次幂 346

21.5 g(k) 的一个下界 347

21.6 G(k) 的下界 348

21.7 受符号影响的和:数v(k) 351

21.8 v(k) 的上界 352

21.9 Prouhet-Tarry 问题:数P(k, j) 354

21.10 对特殊的k 和j 计算P(k, j) 356

21.11 Diophantus 分析的进一步的问题 358

本章附注 361

第 22 章素数(3) 368

22.1 函数 (x) 和ψ(x) 368

22.2 (x) 和ψ(x) 的阶为x 的证明 369

22.3 Bertrand 假设和一个关于素数的“公式” 371

22.4 定理7 和定理9 的证明 374

22.5 两个形式变换 375

22.6 一个重要的和 376

22.7 Σp 1 与Π(1 p 1) 378

22.8 Mertens 定理 380

22.9 定理323 和定理328 的

证明 382

22.10 n 的素因子个数 383

22.11 ω(n) 和Ω(n) 的正规阶 385

22.12 关于圆整数的一个注解 387

22.13 d(n) 的正规阶 388

22.14 Selberg 定理 388

22.15 函数R(x) 和V (ξ) 390

22.16 完成定理434、定理6 和定理8 的证明 394

22.17 定理335 的证明 396

22.18 k 个素因子的乘积 397

22.19 区间中的素数 399

22.20 关于素数对p, p + 2 的分布的一个猜想 400

本章附注 402

第 23 章Kronecker 定理 405

23.1 一维的Kronecker 定理 405

23.2 一维定理的证明 406

23.3 反射光线的问题 408

23.4 一般定理的表述 410

23.5 定理的两种形式 411

23.6 一个例证 413

23.7 Lettenmeyer 给出的定理证明 413

23.8 Estermann 给出的定理证明 415

23.9 Bohr 给出的定理证明 417

23.10 一致分布 419

本章附注 421

第 24 章数的几何 422

24.1 基本定理的导引和重新表述 422

24.2 简单的应用 423

24.3 定理448 的算术证明 425

24.4 最好的可能的不等式 427

24.5 关于ξ2 + η2 的最好可能的不等式 428

24.6 关于|ξη| 的最好可能的不等式 429

24.7 关于非齐次型的一个定理 431

24.8 定理455 的算术证明 433

24.9 Tchebotaref 定理 434

24.10 Minkowski 定理(定理446)的逆定理 436

本章附注 439

第 25 章椭圆曲线 444

25.1 同余数问题 444

25.2 椭圆曲线的加法法则 445

25.3 定义椭圆曲线的其他方程 450

25.4 有限阶点 452

25.5 有理点组成的群 456

25.6 关于模p 的点群 462

25.7 椭圆曲线上的整点 463

25.8 椭圆曲线的L 级数 466

25.9 有限阶点与模曲线 469

25.10 椭圆曲线与Fermat 大定理 472

本章附注 474

附录 479

参考书目 482

特殊符号和术语索引 486

常见人名对照表 489

《哈代数论(第6 版)》补遗 491


作者介绍:

戈弗雷·哈代(Godfrey Harold Hardy) 英国数学界和英国分析学派的领袖,享誉世界的数学大师,在数论和分析学方面有着巨大的贡献和深远影响。培养和指导了众多数学大家,其中包括印度数学奇才拉马努金和我国数学家华罗庚。他还著有《一个数学家的辩白》《纯数学教程》《不等式》等。 爱德华·赖特(Edward Maitland Wright) 英国著名数学家,毕业于牛津大学,是戈弗雷·哈代的学生。生前担任英国名校阿伯丁大学校长多年。爱丁堡皇家学会会士、伦敦数学会会士。曾任 Journal of Graph Theory 和 Zentralblatt für Mathematik 的名誉主编。 戴维·希思-布朗(David Roger Heath-Brown) 著名数学家,牛津大学教授,英国皇家学会会员,分别于1981年和1996年获得伦敦数学会颁发的贝维克奖(Berwick Prize)。 约瑟夫·西尔弗曼(Joseph H. Silverman) 著名数学家,美国布朗大学教授,哈佛大学博士毕业。著有 The Arithmetic of Elliptic Curves 等十多本书,发表学术论文100多篇。 张明尧(Zhang Mingyao) 1945年12月出生,1987年在中国科学院数学研究所获得博士学位。先后在安徽大学、中国科技大学博士后流动站、中国科技大学、华东理工大学等学校工作,长期从事解析数论、代数数论以及计算数论方面的研究工工作,有多部译作出版。 张凡(Zhang Fan) 1982年7月出生,加拿大康考迪亚大学数学系毕业,获得统计专业硕士学位。参与翻译的著作有《数论导引(第5版)》和《具体数学:计算机科学基础(第2版)》等。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

而当 x→∞ 时有


然而 M13 = 8191 和 M8191 都是合数。


这就是“Goldbach 定理”


A. E. Inghan


Ferrier 的素数是 (2^148 + 1) / 7


那么点 (x1, y1) 和 (x2, y2) 等价的条件就是


其它内容:

编辑推荐

经典的数论名著,取材于作者在牛津大学、剑桥大学等大学授课的讲义


书籍介绍

本书是数论领域的一部传世名著,也是现代数学大师哈代的代表作之一。书中从多个角度对数论进行了深入阐述,内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分划等。新版与时俱进,修订了每章末的附注,简要介绍数论最新的发展,增加了一章讲述椭圆曲线,还列出了进一步阅读的文献。

本书自出版以来一直备受数学界推崇,被牛津大学、麻省理工学院、加州大学伯克利分校等知名大学指定为教材或参考书,也是斯坦福大学每个数学与计算机专业学生应读的一本书。


书籍真实打分

  • 故事情节:9分

  • 人物塑造:9分

  • 主题深度:8分

  • 文字风格:3分

  • 语言运用:3分

  • 文笔流畅:4分

  • 思想传递:4分

  • 知识深度:3分

  • 知识广度:9分

  • 实用性:5分

  • 章节划分:5分

  • 结构布局:5分

  • 新颖与独特:6分

  • 情感共鸣:3分

  • 引人入胜:7分

  • 现实相关:6分

  • 沉浸感:4分

  • 事实准确性:7分

  • 文化贡献:8分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:7分

  • 网站更新速度:6分

  • 使用便利性:9分

  • 书籍清晰度:3分

  • 书籍格式兼容性:3分

  • 是否包含广告:5分

  • 加载速度:8分

  • 安全性:3分

  • 稳定性:4分

  • 搜索功能:5分

  • 下载便捷性:4分


下载点评

  • 小说多(229+)
  • 体验差(607+)
  • 下载快(390+)
  • 超值(153+)
  • 无水印(310+)
  • 已买(680+)
  • 内涵好书(561+)
  • 内容完整(240+)
  • 中评(150+)
  • 赞(524+)
  • azw3(98+)
  • 愉快的找书体验(122+)

下载评价

  • 网友 焦***山: ( 2024-12-29 06:48:57 )

    不错。。。。。

  • 网友 晏***媛: ( 2025-01-06 07:40:24 )

    够人性化!

  • 网友 孙***夏: ( 2024-12-28 20:00:58 )

    中评,比上不足比下有余

  • 网友 曹***雯: ( 2025-01-14 02:38:08 )

    为什么许多书都找不到?

  • 网友 孙***美: ( 2025-01-13 03:21:27 )

    加油!支持一下!不错,好用。大家可以去试一下哦

  • 网友 詹***萍: ( 2025-01-02 03:01:15 )

    好评的,这是自己一直选择的下载书的网站

  • 网友 康***溪: ( 2025-01-06 17:14:44 )

    强烈推荐!!!

  • 网友 马***偲: ( 2025-01-08 22:16:22 )

    好 很好 非常好 无比的好 史上最好的

  • 网友 权***颜: ( 2025-01-04 02:48:46 )

    下载地址、格式选择、下载方式都还挺多的

  • 网友 步***青: ( 2024-12-29 01:19:56 )

    。。。。。好

  • 网友 薛***玉: ( 2024-12-27 13:47:16 )

    就是我想要的!!!

  • 网友 方***旋: ( 2025-01-02 11:23:32 )

    真的很好,里面很多小说都能搜到,但就是收费的太多了

  • 网友 宓***莉: ( 2024-12-25 03:27:24 )

    不仅速度快,而且内容无盗版痕迹。

  • 网友 堵***洁: ( 2025-01-03 14:39:49 )

    好用,支持

  • 网友 融***华: ( 2024-12-28 19:47:15 )

    下载速度还可以

  • 网友 谭***然: ( 2025-01-12 01:32:51 )

    如果不要钱就好了


随机推荐